14.4 EXACT INFERENCE IN BAYESIAN NETWORKS

The basic task for any probabilistic inference system is to compute the posterior probability distribution for a set of query variables, given some observed event - that is, some assignment of values to a set of evidence variables. To simplify the presentation, we will consider only one query variable at a time; the algorithms can easily be extended to queries with multiple variables. We will use the notation from Chapter 13: X denotes the query variable; \mathbf{E} denotes the set of evidence variables E_{1}, \ldots, E_{m}, and \mathbf{e} is a particular observed event; \mathbf{Y} will denotes the nonevidence, nonquery variables Y_{1}, \ldots, Y_{l} (called the hidden variables). Thus, the complete set of variables is $\mathbf{X}=\{X\} \cup \mathbf{E} \cup \mathbf{Y}$. A typical query asks for the posterior probability distribution $\mathbf{P}(X \mid \mathbf{e})$.

In the burglary network, we might observe the event in which JohnCalls $=$ true and MaryCalls $=$ true. We could then ask for, say, the probability that a burglary has occurred:

$$
\mathbf{P}(\text { Burglary } \mid \text { JohnCalls }=\text { true }, \text { MaryCalls }=\text { true })=\langle 0.284,0.716\rangle .
$$

In this section we discuss exact algorithms for computing posterior probabilities and will consider the complexity of this task. It turns out that the general case is intractable, so Section 14.5 covers methods for approximate inference.

14.4.1 Inference by enumeration

Chapter 13 explained that any conditional probability can be computed by summing terms from the full joint distribution. More specifically, a query $\mathbf{P}(X \mid \mathbf{e})$ can be answered using Equation (13.9), which we repeat here for convenience:

$$
\mathbf{P}(X \mid \mathbf{e})=\alpha \mathbf{P}(X, \mathbf{e})=\alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})
$$

Now, a Bayesian network gives a complete representation of the full joint distribution. More specifically, Equation (14.2) on page 513 shows that the terms $P(x, \mathbf{e}, \mathbf{y})$ in the joint distribution can be written as products of conditional probabilities from the network. Therefore, a query can be answered using a Bayesian network by computing sums of products of conditional probabilities from the network.

Consider the query \mathbf{P} (Burglary \mid JohnCalls $=$ true, MaryCalls $=$ true $)$. The hidden variables for this query are Earthquake and Alarm. From Equation (13.9), using initial letters for the variables to shorten the expressions, we have ${ }^{4}$

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a,) .
$$

The semantics of Bayesian networks (Equation (14.2)) then gives us an expression in terms of CPT entries. For simplicity, we do this just for Burglary = true:

$$
P(b \mid j, m)=\alpha \sum_{e} \sum_{a} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) .
$$

To compute this expression, we have to add four terms, each computed by multiplying five numbers. In the worst case, where we have to sum out almost all the variables, the complexity of the algorithm for a network with n Boolean variables is $O\left(n 2^{n}\right)$.
 term is a constant and can be moved outside the summations over a and e, and the $P(e)$ term can be moved outside the summation over a. Hence, we have

$$
\begin{equation*}
P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a) \tag{14.4}
\end{equation*}
$$

This expression can be evaluated by looping through the variables in order, multiplying CPT entries as we go. For each summation, we also need to loop over the variable's possible

[^0]values. The structure of this computation is shown in Figure 14.8. Using the numbers from Figure 14.2, we obtain $P(b \mid j, m)=\alpha \times 0.00059224$. The corresponding computation for $\neg b$ yields $\alpha \times 0.0014919$; hence,
$$
\mathbf{P}(B \mid j, m)=\alpha\langle 0.00059224,0.0014919\rangle \approx\langle 0.284,0.716\rangle
$$

That is, the chance of a burglary, given calls from both neighbors, is about 28%.
The evaluation process for the expression in Equation (14.4) is shown as an expression tree in Figure 14.8. The Enumeration-Ask algorithm in Figure 14.9 evaluates such trees using depth-first recursion. The algorithm is very similar in structure to the backtracking algorithm for solving CSPs (Figure 6.5) and the DPLL algorithm for satisfiability (Figure 7.17).

The space complexity of ENUMERATION-ASK is only linear in the number of variables: the algorithm sums over the full joint distribution without ever constructing it explicitly. Unfortunately, its time complexity for a network with n Boolean variables is always $O\left(2^{n}\right)$ better than the $O\left(n 2^{n}\right)$ for the simple approach described earlier, but still rather grim.

Note that the tree in Figure 14.8 makes explicit the repeated subexpressions evaluated by the algorithm. The products $P(j \mid a) P(m \mid a)$ and $P(j \mid \neg a) P(m \mid \neg a)$ are computed twice, once for each value of e. The next section describes a general method that avoids such wasted computations.

14.4.2 The variable elimination algorithm

The enumeration algorithm can be improved substantially by eliminating repeated calculations of the kind illustrated in Figure 14.8. The idea is simple: do the calculation once and save the results for later use. This is a form of dynamic programming. There are several ver- sions of this approach; we present the variable elimination algorithm, which is the simplest. Variable elimination works by evaluating expressions such as Equation (14.4) in right-to-left order (that is, bottom up in Figure 14.8). Intermediate results are stored, and summations over each variable are done only for those portions of the expression that depend on the variable.

Let us illustrate this process for the burglary network. We evaluate the expression

$$
\mathbf{P}(B \mid j, m)=\alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_{1}(B)} \sum_{e} \underbrace{P(e)}_{\mathbf{f}_{2}(E)} \sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{\mathbf{f}_{3}(A, B, E)} \underbrace{P(j \mid a)}_{\mathbf{f}_{4}(A)} \underbrace{P(m \mid a)}_{\mathbf{f}_{5}(A)} \text { FACTORES }
$$

Notice that we have annotated each part of the expression with the name of the corresponding factor; each factor is a matrix indexed by the values of its argument variables. For example, the factors $\mathbf{f}_{4}(A)$ and $\mathbf{f}_{5}(A)$ corresponding to $P(j \mid a)$ and $P(m \mid a)$ depend just on A because J and M are fixed by the query. They are therefore two-element vectors:

$$
\mathbf{f}_{4}(A)=\binom{P(j \mid a)}{P(j \mid \neg a)}=\binom{0.90}{0.05} \quad \mathbf{f}_{5}(A)=\binom{P(m \mid a)}{P(m \mid \neg a)}=\binom{0.70}{0.01}
$$

$\mathbf{f}_{3}(A, B, E)$ will be a $2 \times 2 \times 2$ matrix, which is hard to show on the printed page. (The "first" element is given by $P(a \mid b, e)=0.95$ and the "last" by $P(\neg a \mid \neg b, \neg e)=0.999$.) In terms of factors, the query expression is written as

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)
$$

Figure 14.8 The structure of the expression shown in Equation (14.4). The evaluation proceeds top down, multiplying values along each path and summing at the " + " nodes. Notice the repetition of the paths for j and m.

```
function Enumeration-Ask \((X, \mathbf{e}, b n)\) returns a distribution over \(X\)
    inputs: \(X\), the query variable
            e, observed values for variables \(\mathbf{E}\)
            \(b n\), a Bayes net with variables \(\{X\} \cup \mathbf{E} \cup \mathbf{Y} / * \mathbf{Y}=\) hidden variables */
    \(\mathbf{Q}(X) \leftarrow\) a distribution over \(X\), initially empty
    for each value \(x_{i}\) of \(X\) do
        \(\mathbf{Q}\left(x_{i}\right) \leftarrow\) Enumerate-AlL \(\left(b n\right.\).Vars, \(\left.\mathbf{e}_{x_{i}}\right)\)
            where \(\mathbf{e}_{x_{i}}\) is \(\mathbf{e}\) extended with \(X=x_{i}\)
    return \(\operatorname{Normalize}(\mathbf{Q}(X))\)
```

function EnUMERATE-ALL(vars, e) returns a real number
if Empty? (vars) then return 1.0
$Y \leftarrow \mathrm{FIRST}($ vars $)$
if Y has value y in \mathbf{e}
then return $P(y \mid \operatorname{parents}(Y)) \times$ Enumerate-All(Rest(vars), e)
else return $\sum_{y} P(y \mid \operatorname{parents}(Y)) \times \operatorname{EnUMERATE-ALL}\left(\operatorname{Rest}(\right.$ vars $\left.), \mathbf{e}_{y}\right)$
where \mathbf{e}_{y} is \mathbf{e} extended with $Y=y$

Figure 14.9 The enumeration algorithm for answering queries on Bayesian networks.
where the " x " operator is not ordinary matrix multiplication but instead the pointwise product operation, to be described shortly.

The process of evaluation is a process of summing out variables (right to left) from pointwise products of factors to produce new factors, eventually yielding a factor that is the solution, i.e., the posterior distribution over the query variable. The steps are as follows:

- First, we sum out A from the product of $\mathbf{f}_{3}, \mathbf{f}_{4}$, and \mathbf{f}_{5}. This gives us a new 2×2 factor $\mathbf{f}_{6}(B, E)$ whose indices range over just B and E :

$$
\begin{aligned}
\mathbf{f}_{6}(B, E) & =\sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \\
& =\left(\mathbf{f}_{3}(a, B, E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)\right)+\left(\mathbf{f}_{3}(\neg a, B, E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a)\right)
\end{aligned}
$$

Now we are left with the expression

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E)
$$

- Next, we sum out E from the product of \mathbf{f}_{2} and \mathbf{f}_{6} :

$$
\begin{aligned}
\mathbf{f}_{7}(B) & =\sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E) \\
& =\mathbf{f}_{2}(e) \times \mathbf{f}_{6}(B, e)+\mathbf{f}_{2}(\neg e) \times \mathbf{f}_{6}(B, \neg e)
\end{aligned}
$$

This leaves the expression

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \mathbf{f}_{7}(B)
$$

which can be evaluated by taking the pointwise product and normalizing the result.
Examining this sequence, we see that two basic computational operations are required: pointwise product of a pair of factors, and summing out a variable from a product of factors. The next section describes each of these operations.

Operations on factors

The pointwise product of two factors \mathbf{f}_{1} and \mathbf{f}_{2} yields a new factor \mathbf{f} whose variables are the union of the variables in \mathbf{f}_{1} and \mathbf{f}_{2} and whose elements are given by the product of the corresponding elements in the two factors. Suppose the two factors have variables Y_{1}, \ldots, Y_{k} in common. Then we have

$$
\mathbf{f}\left(X_{1} \ldots X_{j}, Y_{1} \ldots Y_{k}, Z_{1} \ldots Z_{l}\right)=\mathbf{f}_{1}\left(X_{1} \ldots X_{j}, Y_{1} \ldots Y_{k}\right) \mathbf{f}_{2}\left(Y_{1} \ldots Y_{k}, Z, \ldots Z_{l}\right)
$$

If all the variables are binary, then \mathbf{f}_{1} and \mathbf{f}_{2} have 2^{j+k} and 2^{k+l} entries, respectively, and the pointwise product has 2^{j+k+l} entries. For example, given two factors $\mathbf{f}_{1}(A, B)$ and $\mathbf{f}_{2}(B, C)$, the pointwise product $\mathbf{f}_{1} \times \mathbf{f}_{2}=\mathbf{f}_{3}(A, B, C)$ has $2^{1+1+1}=8$ entries, as illustrated in Figure 14.10. Notice that the factor resulting from a pointwise product can contain more variables than any of the factors being multiplied and that the size of a factor is exponential in the number of variables. This is where both space and time complexity arise in the variable elimination algorithm.

A	B	$\mathbf{f}_{1}(A, B)$	B	C	$\mathbf{f}_{2}(B, C)$	A	B	C	$\mathbf{f}_{3}(A, B, C)$
T	T	.3	T	T	.2	T	T	T	$.3 \times .2=.06$
T	F	.7	T	F	.8	T	T	F	$.3 \times .8=.24$
F	T	.9	F	T	.6	T	F	T	$.7 \times .6=.42$
F	F	.1	F	F	.4	T	F	F	$.7 \times .4=.28$
						F	T	T	$.9 \times .2=.18$
						F	T	F	$.9 \times .8=.72$
						F	F	T	$.1 \times .6=.06$
						F	F	F	$.1 \times .4=.04$

Figure 14.10 Illustrating pointwise multiplication: $\mathbf{f}_{1}(A, B) \times \mathbf{f}_{2}(B, C)=\mathbf{f}_{3}(A, B, C)$.
Summing out a variable from a product of factors is done by adding up the submatrices formed by fixing the variable to each of its values in turn. For example, to sum out A from $\mathbf{f}_{3}(A, B, C)$, we write

$$
\begin{aligned}
\mathbf{f}(B, C) & =\sum_{a} \mathbf{f}_{3}(A, B, C)=\mathbf{f}_{3}(a, B, C)+\mathbf{f}_{3}(\neg a, B, C) \\
& =\left(\begin{array}{ll}
.06 & .24 \\
.42 & .28
\end{array}\right)+\left(\begin{array}{ll}
.18 & .72 \\
.06 & .04
\end{array}\right)=\left(\begin{array}{ll}
.24 & .96 \\
.48 & .32
\end{array}\right) .
\end{aligned}
$$

The only trick is to notice that any factor that does not depend on the variable to be summed out can be moved outside the summation. For example, if we were to sum out E first in the burglary network, the relevant part of the expression would be

$$
\sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)=\mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{3}(A, B, E)
$$

Now the pointwise product inside the summation is computed, and the variable is summed out of the resulting matrix.

Notice that matrices are not multiplied until we need to sum out a variable from the accumulated product. At that point, we multiply just those matrices that include the variable to be summed out. Given functions for pointwise product and summing out, the variable elimination algorithm itself can be written quite simply, as shown in Figure 14.11.

Variable ordering and variable relevance

The algorithm in Figure 14.11 includes an unspecified ORDER function to choose an ordering for the variables. Every choice of ordering yields a valid algorithm, but different orderings cause different intermediate factors to be generated during the calculation. For example, in the calculation shown previously, we eliminated A before E; if we do it the other way, the calculation becomes

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \sum_{a} \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{3}(A, B, E)
$$

during which a new factor $\mathbf{f}_{6}(A, B)$ will be generated.
In general, the time and space requirements of variable elimination are dominated by the size of the largest factor constructed during the operation of the algorithm. This in turn

```
function Elimination-ASK ( }X,\mathbf{e},bn)\mathrm{ returns a distribution over }
    inputs: }X\mathrm{ , the query variable
            e, observed values for variables E
            bn, a Bayesian network specifying joint distribution }\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    factors \leftarrow[]
    for each var in ORDER(bn.VARS) do
        factors }\leftarrow[\mathrm{ [MAKE-FACTOR(var, e)|factors]
        if var is a hidden variable then factors }\leftarrow\mathrm{ Sum-OUT(var,factors)
    return NormAlIZE(PointwISE-Product(factors))
```

Figure 14.11 The variable elimination algorithm for inference in Bayesian networks.
is determined by the order of elimination of variables and by the structure of the network. It turns out to be intractable to determine the optimal ordering, but several good heuristics are available. One fairly effective method is a greedy one: eliminate whichever variable minimizes the size of the next factor to be constructed.

Let us consider one more query: $\mathbf{P}($ JohnCalls \mid Burglary $=$ true $)$. As usual, the first step is to write out the nested summation:

$$
\mathbf{P}(J \mid b)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) \mathbf{P}(J \mid a) \sum_{m} P(m \mid a) .
$$

Evaluating this expression from right to left, we notice something interesting: $\sum_{m} P(m \mid a)$ is equal to 1 by definition! Hence, there was no need to include it in the first place; the variable M is irrelevant to this query. Another way of saying this is that the result of the query $P($ JohnCalls \mid Burglary $=$ true $)$ is unchanged if we remove MaryCalls from the network altogether. In general, we can remove any leaf node that is not a query variable or an evidence variable. After its removal, there may be some more leaf nodes, and these too may be irrelevant. Continuing this process, we eventually find that every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query. A variable elimination algorithm can therefore remove all these variables before evaluating the query.

[^0]: 4 An expression such as $\sum_{e} P(a, e)$ means to sum $P(A=a, E=e)$ for all possible values of e. When E is Boolean, there is an ambiguity in that $P(e)$ is used to mean both $P(E=$ true $)$ and $P(E=e)$, but it should be clear from context which is intended; in particular, in the context of a sum the latter is intended.

